PLX039262

GSE100403: A kinome-wide high-content siRNA screen identifies MEK5-ERK5 signaling as critical for breast cancer cell EMT and metastasis

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

We have employed a high-content microscopy screen in combination with a kinome and phosphatome-wide siRNA library to identify signaling pathways underlying an EMT of murine mammary epithelial cells and breast cancer cells. This screen identified the MEK5-ERK5 axis as a critical player in TGFb-mediated EMT. Suppression of MEK5-ERK5 signaling completely prevented the morphological and molecular changes occurring during a TGFb-induced EMT and, conversely, forced highly metastatic breast cancer cells into a differentiated epithelial state. Inhibition of MEK5-ERK5 signaling also repressed breast cancer cell migration and invasion and substantially reduced lung metastasis without affecting primary tumor growth. The results suggest that the MEK5-ERK5 signaling axis plays an important role in the induction and maintenance of breast cancer cell migration and invasion and thus represents an exploitable target for the pharmacological inhibition of cancer cell metastasis. SOURCE: Ravi Kiran Reddy KALATHUR (ravikiran.k@gmail.com) - University of Basel

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team