PLX085947

GSE101898: A single TCF transcription factor, regardless of its activation capacity, is sufficient for effective trilineage differentiation of ES cells

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Co-expression and cross-regulation of the four TCF/LEFs render their redundant and unique functions ambiguous. Here, we describe quadruple-knockout (QKO) mouse ES cells lacking all full-length TCF/LEFs and cell lines rescued with TCF7 or TCF7L1. QKO cells self-renew, despite gene expression patterns that differ significantly from WT, and display delayed, neurectoderm-biased, embryoid body (EB) differentiation. QKO EBs have no contracting cardiomyocytes and differentiate poorly into mesendoderm, but readily generate neuronal cells. QKO cells and TCF7L1-rescued cells cannot efficiently activate TCF reporters, whereas TCF7-rescued cells exhibit significant reporter responsiveness. Surprisingly, despite dramatically different transactivation capacities, re-expression of TCF7L1 or TCF7 in QKO cells restores their tri-lineage differentiation ability, with similar lineage marker expression patterns and beating cardiomyocyte frequencies observed in EBs. Both factors also similarly affect the transcriptome of QKO cells. Our data reveal that a single TCF, regardless of its activation capacity, is sufficient for effective trilineage differentiation of ES cells. SOURCE: Bradley Doble (dobleb@mcmaster.ca) - Stem Cell and Cancer Research Institute McMaster University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team