PLX088880

GSE101909: Fgf8 signaling alters the osteogenic cell fate in anterior hard palate

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

FGF signaling has been implicated in the regulation of osteogenesis in both intramembranous and endochondral ossification. In the developing palate, the anterior bony palate forms by direct differentiation of cranial neural crest-derived mesenchymal cells, but the signals that regulate osteogenic cell fate remains unclear. In the present study, we present evidence that locally activated FGF8 signaling in the anterior palate leads to complete bone loss of the palatine process of the maxilla (ma) and ectopic cartilage formation. This aberrant developmental process was accompanied by significantly elevated level of cell proliferation, which contributes to abnormally thickened ma, and complete inhibition of Osterix expression, which accounts for the lack of bone formation. Consistent with the phenotype, RNA-Sequencing (RNA-Seq) analysis further demonstrated that augmented FGF8 signaling downregulated genes involved in ossification, biomineral tissue development, and bone mineralization, but upregulated genes involved in cell proliferation, cartilage development, and cell fate commitment. Expression validation of selected genes supported the RNA-Seq results. We conclude that FGF signaling functions as a negative regulator of osteogenic fate but promotes chondrogenesis of cranial neural crest cell-derived mesenchyme in the hard palate, which will have implication in directed differentiation of precursor cells for clinical application. SOURCE: Yiping Chen (ychen@tulane.edu) - Tulane University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team