PLX115995

GSE102182: Developmental stage specific chromosome architecture in human erythroid cells (RNA-seq)

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Chromatin structure is tightly intertwined with transcription regulation. Here we compared the chromosomal architectures of fetal and adult human erythroblasts and find that globally, chromatin structures and compartments A/B are highly similar at both developmental stages. At a finer scale, we detect distinct folding patterns at the developmentally controlled b-globin locus. Specifically, new fetal stage-specific contacts are uncovered between a region separating the fetal (g-) and adult (b-) globin genes (encompassing the HBBP1 and BGLT3 non-coding genes) and two distal chromosomal sites (HS5 and 3'HS1) that flank the locus. In contrast, in adult cells the HBBP1-BGLT3 region contacts the embryonic e-globin gene, physically separating the fetal globin genes from the enhancer (LCR). Removal of the HBBP1 gene strongly reactivates g-globin expression, accompanied by increased LCR-g-globin and decreased BGLT3-e-globin interactions, mimicking the effects of deleting the fetal globin repressor BCL11A. Our results uncover a new critical regulatory region as a potential target for therapeutic genome editing for hemoglobinopathies and highlight the power of chromosome conformation analysis in discovering new cis control elements. SOURCE: Peng Huang (huangp1@email.chop.edu) - Gerd Blobel The Children's Hospital of Philadelphia

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team