PLX107398

GSE102748: Gene expression profiling during active Lyme arthritis development (22 days post infection with B. burgdorferi) in CD45 negative cells isolated from joint tissue of highly genetically similar mouse strains: B6, ISRCL4, and ISRCL3

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Previously, using a forward genetic approach we identified B. burgdorferi arthritis-associated locus 1 (Bbaa1), a quantitative trait locus on Chr4, which physically encompasses the type I IFN gene cluster and regulates Lyme arthritis through heightened type I IFN production. Reciprocal radiation chimeras between B6.C3-Bbaa1 and B6 mice revealed that arthritis is initiated by radiation-sensitive cells, but orchestrated by radiation-resistant components of joint tissue. Advanced congenic lines were developed to reduce the physical size of the Bbaa1 interval, and RNA-seq of resident CD45- joint cells from advanced interval specific recombinant congenic lines (ISRCL4 and ISRCL3) identified myostatin as uniquely upregulated in association with Bbaa1 arthritis development. Our manuscript further demonstrates that myostatin expression is linked to IFN- production, and in vivo inhibition of myostatin suppresses Lyme arthritis in the reduced interval Bbaa1 congenic mice, formally implicating myostatin as a novel downstream mediator of joint-specific inflammatory response to B. burgdorferi. SOURCE: Jacqueline Paquette (j.paquette@path.utah.edu) - Janis Weis Lab University of Utah

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team