PLX109803

GSE104232: NFIA enables the rapid derivation of functional, human astrocytes from pluripotent stem cells by modulating G1 cell cycle length

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The development of the central nervous system (CNS) depends on the orchestrated generation of neurons and glia from neural stem cells (NSCs). Although NSCs generate both cell types, they are produced sequentially as neurons are born first and glia later. In humans, this timing is extremely protracted and the underlying mechanisms remain unknown. Deriving glial cells such as astrocytes from human pluripotent stem cells requires 3-6 months of differentiation, greatly impeding their use in human disease modeling and regenerative medicine. Here, we report that expression of the transcription factor nuclear factor IA (NFIA) is sufficient to trigger glial competency in highly neurogenic NSCs and enables the derivation of human astrocytes within 10-12 days. NFIA-induced astrocytes are functional and shown to promote synaptogenesis, protect neurons and generate calcium transients. The mechanism of NFIA-induced glial competency involves rapid but reversible chromatin remodeling, demethylation of the GFAP promoter and a striking effect on the cell cycle. NFIA titration and pharmacological studies indicate that acquisition of a glial-compatible G1 length is critical for achieving glial competency. Our results offer mechanistic insights into human glial competency and enable the routine use of astrocytes for studying human development and disease. SOURCE: Lorenz Studer Memorial Sloan Kettering Cancer Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team