PLX105804

GSE104243: Distinct distribution of H3K27me3 and DNA methylation stabilizes the segregation of extraembryonic and embryonic lineages

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

One of the most important topic in mammalian embryogenesis is cell lineage segregation. Briefly, one totipotent zygote will develop into inner cell mass (ICM) and trophectoderm (TE) at blastocyst stage, then the ICM will finally develop into multiple somatic cell lineages and TE will majorly become the placenta tissue which supports and protects the development of the embryo proper. Multiple extrinsic and intrinsic regulatory pathways are involved in facilitating the appropriate development of the embryo. Epigenetic reprogramming is one of the most pervasive events during mouse embryo development(Li, 2002). Recent studies had implied that distinct features for the establishment of DNA methylation(Monk et al., 1987) and histone modifications especially H3K27me3(Liu et al., 2016) during mouse early embryo development. The re-establishment of DNA methylation in early mouse embryos starts at blastocyst stage (about embryonic day 3.5, E3.5) and peaks around the gastrulation stage, while the re-establishment of H3K27me3 exhibits a great level of dynamics and gradually increased CpG preference during pre-implantation embryo development(Liu et al., 2016). However, the underlying epigenetic mechanism concerning the lineage segregation and developmental competence restriction between the pluripotent embryo proper and the supporting extraembryonic tissues especially extraembryonic ectoderm (ExE) remains largely unknown. Surprisingly, no significant difference exists for the distribution of H3K27me3 and DNA methylation between ICM and TE in the preimplantation embryos. Therefore, it is of great importance for unveiling the interplays between H3K27me3 and DNA methylation involving in the restriction of developmental competence between embryonic cells and extraembryonic cells in post-implantation embryos. SOURCE: Naihe Jing (njing@sibcb.ac.cn) - shanghai institute of biochemistry and cell biology

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team