PLX279282

GSE105762: In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states (I, bulk RNA-Seq data)

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Naive pluripotent cells in the implanting mouse blastocyst generate a rosette structure before undergoing lumenogenesis to form the egg cylinder. Simultaneously, they acquire primed pluripotency, the ability to differentiate into the primary germ layers. The existence of discrete intermediate pluripotent states during this transition has not been demonstrated. We identify here a distinct rosette pluripotent state, defined by co-expression of naive factors with transcription factor OTX2. Downregulation of WNT signals in the blastocyst drives transition into rosette pluripotency by inducing OTX2. The rosette then activates MEK signals that induce lumenogenesis and drive progression to primed pluripotency. Consequently, combined WNT and MEK inhibition supports rosette-like stem cells (RSCs), a self-renewing naive-primed intermediate. RSCs gain a unique epigenome that includes erasure of constitutive heterochromatin and bivalent marking of primed pluripotency genes. Notwithstanding this primed chromatin landscape, WNT induces reversion to naive pluripotency. The rosette is therefore a reversible pluripotent intermediate where control over pluripotency progression and morphogenesis pivots from WNT to MEK signals. SOURCE: Derk ten Berge (d.tenberge@erasmusmc.nl) - ErasmusMC

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team