PLX280371

GSE105906: Comparative transcriptome analysis of murine macrophages infected with Brucella suis vaccine strain S2 and the virulent Brucella suis strain 1330

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Brucellosis is one of the most common zoonotic epidemics worldwide. Vaccination against Brucellosis is an important control strategy to prevent the disease in many high-prevalence regions. At present, Brucella vaccine strain S2 is the most widely used vaccine in China. In this study, to uncover the related mechanisms underlie virulence attenuation of S2, we characterized the transcriptional profile of S2 and 1330 infected macrophages by transcriptome analysis. The results revealed that expressions of 440 genes were significantly different between macrophages infected by 1330 and S2. Data analysis showed that in the gene ontology term, the different expressed genes involved in innate immune response, phagoctyosis, recognition, and inflammatory response were significantly enriched. Pathway enrichment analysis indicated that the genes involved in transcriptional misregulation in cancer, staphylococcus aureus infection pathways and NF-kappa B signaling pathway were significantly affected. To reveal the molecular mechanisms related to different expression profiles of infected macrophages, the transcription levels of the different genes between the two bacterial genomes were also detected. In total, the transcription of 29 different genes was significantly changed in either culture medium or infected microphages. The results of current study can be conducive to the promotion of better understanding of the related mechanisms underlie virulence attenuation of S2 and interactions between host cells and brucella strains. SOURCE: Hui Jiang (15011216921@163.com) - China Insititute of Veterinary Drug Control

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team