PLX290507

GSE106231: O-GlcNAcylation of human TATA-Box binding protein is required to sustain key metabolic enzyme gene expression

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cellular homeostasis is ensured by myriad cellular processes that integrate environmental changes and maintain stability within the organism. Variation in nutrient availability can be reflected by the post-translational modification of many proteins by the nutrient sensor O-GlcNAcylation. Herein, we describe a molecular mechanism of transcription regulation by O-GlcNAcylation of the TATA-box binding protein (TBP). We show that O-GlcNAcylation regulates its interaction with BTAF1, hence, formation of the B-TFIID complex, and its dynamic cycling on and off of DNA. We mapped three O-GlcNAcylation sites at the N-terminus of TBP and defined T114 as a main regulator of the interaction with BTAF1. CRISPR/Cas9 editing of wild-type TBP replaced by a T114A mutant, leads to profound modification of HeLa cells glucose and lipid metabolism and gene expression profile. These data indicate that basal transcription machinery, via O-GlcNAcylation of TBP, can integrate nutrient availability and modulate the transcriptome, resulting in adaptation of cellular metabolism. SOURCE: Gerald,W,HartHart Lab Johns Hopkins School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team