PLX250763

GSE107470: Fenofibrate Prevents Skeletal Muscle Loss in Mice with Lung Cancer

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The cancer anorexia cachexia syndrome is a systemic metabolic disorder characterized by the catabolism of stored nutrients in skeletal muscle and adipose tissue that is particularly prevalent in non-small cell lung cancer (NSCLC). Loss of skeletal muscle results in functional impairments and increased mortality. The aim of the current study was to characterize the changes in systemic metabolism in a genetically engineered mouse model of NSCLC. We show that a portion of these animals develop loss of skeletal muscle, loss of adipose tissue, and increased inflammatory markers mirroring the human cachexia syndrome. Using non-cachexic and fasted animals as controls, we report a unique cachexia metabolite phenotype that includes the dependent ketone production by the liver. In this setting, glucocorticoid levels rise and correlate with skeletal muscle degradation and hepatic markers of gluconeogenesis. Restoring prevents the loss of skeletal muscle mass and body weight. These results demonstrate how targeting hepatic metabolism can prevent muscle wasting in lung cancer, and provide evidence for a novel therapeutic strategy. SOURCE: Charles Murphy (murphy.charlesj@gmail.com) - Weill Cornell Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team