Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreDefining conserved molecular pathways in animal models of successful cardiac regeneration could yield insight into why adult mammals have inadequate cardiac regeneration after injury. Here we describe a cross-species transcriptomic screen to identify evolutionarily conserved pathways in the early events of cardiac regeneration in three species that can regenerate myocardium after a major injury. In this study, we performed RNA-seq on regenerating hearts from three model organisms - axolotl, zebrafish and mouse. Apical resection was performed to amputate ~10 - 20% of the left ventricle in all three model organisms. Following resection, hearts were harvested at 12, 24 and 48 hours post-resection and subjected to RNA-seq. RNA-seq on sham controls (no ventricular amputation) was used as interanal control. This approach revealed upregulation of inflammatory genes in all three organisms during regeneration. Furthermore, upregulation of Complement 5a receptor1 (C5aR1) expression in the regenerating hearts of zebrafish, axolotls and mice was observed. SOURCE: Niranjana Natarajan (niranjana_natarajan@harvard.edu) - Harvard University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team