PLX075186

GSE108872: Tet1 and Tet2 Maintain Mesenchymal Stem Cell Homeostasis via demethylation of P2rX7 promoter

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Ten-eleven translocation (Tet) family-mediated DNA oxidation represents a novel epigenetic modification capable of converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) to regulate various biological processes. However, it is unknown whether the Tet family affects mesenchymal stem cells (MSCs) or the skeletal system. Here we show that depletion of Tet1 and Tet2 resulted in impaired self-renewal and differentiation of bone marrow MSCs (BMMSCs) and a significant osteopenia phenotype. Mechanistically, Tet1 and Tet2 deficiency reduced demethylation of the P2rX7 promoter and thus downregulated exosome release, leading to intracellular accumulation of miR-297a-5p, miR-297b-5p, and miR-297c-5p. These miRNAs inhibited Runx2 signaling to impair BMMSC function. We show that overexpression of P2rX7 consistently rescued the impaired BMMSCs and osteoporotic phenotype in Tet1 and Tet2 double knockout mice. These results indicate that Tet1 and Tet2 play a critical role in maintaining BMMSC and bone homeostasis through epigenetic regulation of P2rX7 to control exosome and miRNA release. This newly identified Tet/P2rX7/Runx2 cascade may serve as a target for the development of novel therapies for osteopenia disorders. SOURCE: Ruili Yang (ruiliyangabc@163.com) - Peking University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team