PLX042582

GSE108896: Exploring the transcriptome of resident spinal microglia after collagen antibody-induced arthritis

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Microglia have emerged as crucial players in the maintenance of mechanical hypersensitivity in models of chronic pain, including rheumatoid arthritis. Recent studies have suggested that there is a sexually dimorphic microglial involvement in chronic pain, but the debate is still ongoing. Here, we have used the collagen antibody-induced arthritis (CAIA) mouse model to ascertain possible differences between male and female microglia in the context of arthritis-induced pain. We have focused on the late phase of this arthritis model, when joint inflammation has resolved but mechanical hypersensitivity and microglial activation persist. We found that intrathecal administration of minocycline reversed mechanical thresholds to control levels in male, but not female mice. Moreover, we isolated resident microglia from the lumbar dorsal horns of male and female mice and observed a significantly lower number of microglial cells in females by flow cytometry analysis. Furthermore, genome-wide RNA sequencing results pointed to several transcriptional differences between male and female microglia, but no convincing differences were identified between control and CAIA groups. Taken together, these findings suggest that there are significant but subtle sex differences in microglial expression profiles independent of treatment. To what extent they help bring about the behavioural sexual dimorphism observed after minocycline administration remains to be explored. Finally, our experiments failed to identify the underlying biological correlates of the microglial activation that is present in the late phase of the CAIA model. It is likely that transcriptional changes are either subtle and highly localised and therefore difficult to identify with bulk isolation techniques or that other factors, such as changes in protein expression or epigenetic modifications are at play. SOURCE: Franziska Denk King's College London

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team