PLX095971

GSE109161: Comparison of transcriptional changes after CD28/CD3z and 4-1BB/CD3z chimeric antigen receptor ligation

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The adoptive transfer of chimeric antigen receptor- (CAR) modified T cells is revolutionizing the treatment of B cell malignancies and has the potential to be applied to other diseases. CARs redirect T cell specificity by linking an antigen recognition domain to T cell signaling modules comprised of CD3z to provide signal 1, and CD28 or 4-1BB to provide costimulation. CD28/CD3z and 4-1BB/CD3z CARs confer differences in effector function and cell fate that affect clinical efficacy and toxicity. These differences may result from activation of divergent transcriptional programs. To gain this insight, we analyzed changes in gene expression in stimulated and resting CD28/CD3z or 4-1BB/CD3z CAR T cells. CD28/CD3z CAR stimulation initiated more marked early transcriptional changes with greater fold increases in the expression of effector molecules including GZMB, IFNG, IL2, TNF, and IL6. Direct comparison of CD28/CD3z and 4-1BB/CD3z samples stimulated for 6 hours identified 1,673 differentially expressed genes. Of these, the memory T cell-associated genes KLF2, IL7R, and FAM65B were expressed at lower levels in CD28/CD3z CAR T cells. KLF2 and IL7R are FOXO transcription factor family targets and we found that FOXO4 expression was similarly reduced in CD28/CD3z CAR T cells. CD28/CD3z CAR stimulation induces an effector T cell-like transcriptional profile that may underlie the decreased persistence and increased risks of toxicities observed with CD28/CD3z CAR T cells in early clinical trials. SOURCE: Alexander,Isaac,SalterStanley Riddell Fred Hutchinson Cancer Research Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team