PLX091247

GSE109167: EZH2 Reduction Is an Essential Mechanoresponse for the Maintenance of Super-enhancer Polarization

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Despite the ubiquitous mechanical cues at both spatial and temporal dimensions, cell identities and functions are largely immune to the everchanging mechanical stimuli. To understand the molecular basis of this epigenetic stability, we interrogated compressive force elicited transcriptomic changes in mesenchymal stem cells purified from human periodontal ligament (PDLSCs), and identified H3K27me3 and E2F signatures populated within up- and weakly down-regulated genes respectively. Consistently, expressions of several E2F family transcription factors and EZH2, as core methyltransferase for H3K27me3, decreased in response to mechanical stress, which were attributed to force induced redistribution of RB from nucleoplasm to lamina. Importantly, although epigenomic analysis on H3K27me3 landscape only demonstrated correlating changes at one group of mechanoresponsive genes, we observed a genome-wide destabilization of super-enhancers along with aberrant EZH2 retention. These super-enhancers were tightly bounded by H3K27me3 domain on one side and exhibited attenuating H3K27ac deposition and flattening H3K27ac peaks after force exposure, analogous to increased H3K27ac entropy or decreased H3K27ac polarization. Interference of force induced EZH2 reduction could drive nuclear actin filaments dependent collision between EZH2 and super-enhancers and functionally compromise the multipotency of PDLSC following mechanical stress. These findings together unveil a specific contribution of EZH2 reduction for maintenance of super-enhancer stability and cell identity in mechanoresponse. SOURCE: Yu Zhang Peking University Health Science Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team