PLX065375

GSE109413: Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The intestinal epithelium is a highly structured tissue composed of repeating crypt-villus units. Enterocytes, which constitute the most abundant cell type, perform the diverse tasks of absorbing a wide range of nutrients while protecting the body from the harsh bacterial-rich environment. It is unknown if these tasks are equally performed by all enterocytes or whether they are spatially zonated along the villus axis. Here, we performed whole-transcriptome measurements of laser-capture-microdissected villus segments to extract a large panel of landmark genes, expressed in a zonated manner. We used these genes to localize single sequenced enterocytes along the villus axis, thus reconstructing a global spatial expression map. We found that most enterocyte genes were zonated. Enterocytes at villi bottoms expressed an anti-bacterial Reg gene program in a microbiome-dependent manner, potentially reducing the crypt pathogen exposure. Translation, splicing and respiration genes steadily decreased in expression towards the villi tops, whereas distinct mid-top villus zones sub-specialized in the absorption of carbohydrates, peptides and fat. Enterocytes at the villi tips exhibited a unique gene-expression signature consisting of Klf4, Egfr, Neat1, Malat1, cell adhesion and purine metabolism genes. Our study exposes broad spatial heterogeneity of enterocytes, which could be important for achieving their diverse tasks. SOURCE: Andreas Moor (andreas.moor@weizmann.ac.il) - Itzkovitz lab Weizmann Institute of Science

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team