PLX089529

GSE109724: RB tumor suppressor promotes cancer immunity through downregulating PD-L1 expression

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Aberrant expression of immune checkpoint protein programmed death ligand-1 (PD-L1) promotes immune tolerance in cancer. RB is a tumor suppressor known to regulate the cell cycle, DNA damage response, and differentiation. Here, we demonstrate transient knockdown or homozygous deletion of RB markedly induces PD-L1 mRNA expression. RB binds to NFB protein p65 and serine-249/threonine-252 (S249/T252) phosphorylation of RB is important for its interaction with p65 and suppression of PD-L1 expression. RNA-seq analysis identifies a subset of NFB pathway genes including PD-L1 are selectively upregulated by RB knockdown. S249/T252-phosphorylated RB inversely correlates with PD-L1 expression in patient samples. Expression of a RB-derived S249/T252 phospho-mimicking peptide blocks radiation-induced PD-L1 expression and increases the anti-cancer efficacy of radiation in mice. Our findings reveal a previously unappreciated tumor suppressor function of hyperphosphorylated RB in inhibition of NFB activity and PD-L1 expression, suggesting this regulatory module can be exploited to overcome cancer immune evasion. SOURCE: Zhenqing Ye (iamyezhenqing@gmail.com) - Mayo Clinic

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team