PLX018620

GSE110327: TCR signal strength controls thymic differentiation of iNKT cell subsets

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Three major phenotypically and functionally distinct invariant Natural Killer T (iNKT) cell subsets (iNKT1, iNKT17 and iNKT2), each with propensity to traffic to different tissues and to secrete different cytokines upon activation, have been defined. These fate assignments can be conferred upon iNKT cells during development in the thymus, but the cues that direct these decisions remain unclear. Here, we show that T cell antigen receptor (TCR) signal strength governs the development of iNKT cell subsets in the thymus, with high signaling strength necessary for iNKT2 and iNKT17 development. Alteration of TCR diversity and/or signaling dramatically diminished iNKT2 and iNKT17 cell subset development in a cell intrinsic manner. Decreased TCR signaling affected the persistence of Egr2 expression and the upregulation of PLZF both in vivo and in vitro. Genome-wide chromatin accessibility analysis revealed subset-specific activity of regulatory elements associated with unique signatures of transcription factor binding sites. NFAT and Egr binding motifs were found preferentially enriched in chromatin regulatory regions specifically accessible in iNKT2 cells that were lost in iNKT2 cells that had developed with reduced TCR signaling. Altogether, these data suggest a model of iNKT cell subset development where variable TCR signaling induces changes in chromatin accessibility at NFAT and Egr binding sites which exerts a determinative influence on the dynamic of gene enhancer accessibility that affects the developmental fate of iNKT cells. SOURCE: Kent,Augustus,Riemondy (kent.riemondy@ucdenver.edu) - University of Colorado at Denver

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team