PLX016892

GSE110380: Proximity-CLIP provides a snapshot of occupied cis-acting elements on RNA in different subcellular compartments on a transcriptome-wide scale

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Many cellular RNAs localize to specific subcellular compartments. Currently, methods to systematically study subcellular RNA localization are limited and lagging behind proteomic approaches. Here, we combined APEX2-mediated proximity biotinylation of proteins with PAR-CLIP to simultaneously profile the proteome and the transcriptome bound by RNA binding proteins in any given subcellular compartment. Our approach is fractionation-independent and does not rely on additional RNA manipulation and labeling steps, thus making it easy to apply. Furthermore, it enables to study the locali-zation of RNA processing intermediates, as well as the identification of regulatory RNA cis-acting elements occupied in different cellular compartments. In a proof-of-concept study we studied RNA and protein localization in the nucleus, cytoplasm and at cell-cell interfaces using Proximity-CLIP. These experiments revealed among other in-sights frequent transcriptional readthrough continuing for several kilobases down-stream of the canonical cleavage and polyadenylation site, a differential binding pat-tern of nuclear and cytoplasmic mRNAs, as well as the localization of mRNAs contain-ing 3UTR CUG sequence elements at cell-cell interfaces, of which many encode regulatory proteins. SOURCE: Markus Hafner (markus.hafner@nih.gov) - Laboratory of Muscle Stem Cells and Gene Regulation National Institutes of Health

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team