PLX162165

GSE110972: H3.3K4M targets MLL3/MLL4 to prevent enhancer activation in adipogenesis

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Enhancers play a key role in regulating cell type-specific gene expression and are marked by histone modifications such as methylation and acetylation. Mono-methylation of lysine 4 on histone H3 (H3K4me1) initially primes enhancers, preceding enhancer activation via acetylation of lysine 27 on histone H3 (H3K27ac). MLL4 is a major enhancer H3K4 mono-methyltransferase with partial functional redundancy with MLL3. However, how H3K4me1 affects enhancer regulation in cell differentiation has remained unclear. By screening several lysine-to-methionine mutants of H3.3, we first found that depletion of H3K4 methylation by H3.3K4M mutation severely impairs adipogenesis in culture. Using tissue-specific expression of H3.3K4M in mice, we further demonstrate that H3.3K4M inhibits adipose tissue and muscle development in vivo. Mechanistically, H3.3K4M destabilizes MLL3/4 proteins but not other members of the mammalian Set1-like H3K4 methyltransferase family and prevents MLL3/4-mediated enhancer activation in adipogenesis. Using tissue-specific deletion of the enzymatic SET domain of MLL3/4 in mice, we also show that deletion of the SET domain prevents adipose tissue and muscle development in vivo and inhibits adipogenesis by destabilizing MLL3/4 in vitro. Notably, H3.3K4M expression mimics MLL3/4 SET domain deletion in preventing adipogenesis. Interestingly, H3.3K4M does not affect adipose tissue maintenance and function, suggesting that MLL3/4-mediated H3K4 methylation is dispensable for the maintenance and function of differentiated adipocytes. Together, our findings suggest that H3.3K4M targets MLL3/4 to prevent enhancer activation in adipogenesis. SOURCE: Kai Ge (kai.ge@nih.gov) - NIH

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team