PLX132588

GSE111501: A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver injury-associated YAP signaling (RNA-seq)

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Following injury, differentiated epithelial cells can serve as a stem cell-independent source for tissue regeneration by undergoing reprogramming into other cell types. The intrinsic molecular basis underlying plasticity of differentiated cells remains largely unaddressed. Here we show that Arid1a, a key component of the SWI/SNF chromatin remodeling complex, controls liver regeneration and gene expression associated with emergence of injury-induced progenitor-like cells (LPLCs). Hepatocyte-specific Arid1a ablation reduces LPLC gene expression in several models of periportal liver injury and impairs liver regeneration, leading to organ dysfunction. Arid1a establishes a permissive chromatin state at LPLC-enriched genes during homeostasis, suggesting it endows hepatocytes with competence to respond to injury-induced signals. Consistently, Arid1a facilitates binding of YAP, a critical regeneration signaling pathway, to LPLC-enriched genes, and Arid1a deletion prevents their YAP-associated induction following injury. Together, these findings provide a framework for studying the contributions of injury-induced LPLCs to periportal liver regeneration. SOURCE: Lijian Hui (huilab@sibcb.ac.cn) - SIBS, CAS

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team