PLX101828

GSE111855: Learning the cis sequence elements that determine AP-1 monomer specificity (RNA-seq data sets)

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Regulation of gene expression is mediated by combinations of DNA binding transcription factors that work in concert to recruit transcriptional machinery. Each cell type expresses hundreds of sequence-specific transcription factors, many of which recognize identical or similar DNA sequences. Such factors can play both redundant and non-redundant roles, but mechanisms determining overlapping or distinct biological outcomes are largely unknown. Here, we implement a machine learning approach to investigate how local combinations of sequence motifs influence the genome wide binding patterns of different members of the AP-1 transcription factor family in macrophages. Significant motifs associated with family member specific binding patterns were validated by assessing effects of motif mutations in different strains of mice. We further confirmed the prediction of PPARg to be preferentially associated with the specific binding pattern of cJun using PPARg knockout macrophages. Together, our results provide evidence that unique binding patterns of AP-1 family members result in part from the corresponding unique ensembles of nearby regulatory elements embedded within enhancers and promoters, and that these elements can be identified by machine learning models trained using genomic sequence. SOURCE: Jenhan Tao (jenhantao@gmail.com) - Glass UC San Diego

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team