PLX155402

GSE111977: Efficient generation of human CA3 neurons and modeling hippocampal neuronal connectivity in vitro (bulk)

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Despite widespread interest in using human stem cells in neurological disease modeling, a suitable model system to study human neuronal connectivity is lacking. Here, we report a protocol for efficient differentiation of hippocampal pyramidal neurons and an in vitro model for hippocampal neuronal connectivity. We developed an embryonic stem cell (ESC)- and induced pluripotent stem cell (iPSC)-based protocol to differentiate human CA3 pyramidal neurons from patterned hippocampal neural progenitor cells (NPCs). This differentiation induces a comprehensive patterning and generates multiple CA3 neuronal subtypes. The differentiated CA3 neurons are functionally active and readily form neuronal connection with dentate granule (DG) neurons in vitro, recapitulating the synaptic connectivity within the hippocampus. When we applied this neuronal co-culture approach to study connectivity in schizophrenia, we found deficits in spontaneous activity in patient iPSC derived DGCA3 co-culture by multi-electrode array recording. In addition, both multi-electrode array recording and whole cell patch clamp electrophysiology revealed a reduction in spontaneous and evoked neuronal activity in CA3 neurons derived from schizophrenia patients. Altogether these results underscore the relevance of this new model in studying diseases with hippocampal vulnerability. SOURCE: Maxim,Nikolaievich,Shokhirev (mshokhirev@salk.edu) - IGC Salk Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team