PLX194257

GSE112377: Subtype diversification and synaptic specificity of stem cell-derived spinal interneurons

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Neuronal diversification is a fundamental step in the construction of functional neural circuits, yet how neurons generated from single progenitor domains acquire diverse subtype identities remains poorly understood. Here, we developed a stem cell-based system to model subtype diversification of V1 interneurons, a class of spinal neurons comprising four clades, each containing dozens of molecularly distinct neuronal subtypes. We demonstrate that V1 subtype diversity is not hard-wired and can be modified by extrinsic signals. Inhibition of Notch and activation of retinoid signaling results in a switch to MafA clade identity and enriches differentiation of Renshaw cells, a specialized MafA subtype that mediates recurrent inhibition of spinal motor neurons. We show that in vitro-generated Renshaw cells migrate into appropriate spinal laminae upon transplantation and form subtype-specific synapses with motor neurons. Our results demonstrate that stem cell-derived neuronal subtypes can be used to investigate mechanisms underlying neuronal subtype specification and circuit assembly. SOURCE: Phuong,Thi,HoangWichterle Columbia University Medical Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team