PLX113396

GSE112886: Generation of esophageal organoids from human pluripotent stem cells and their use to study human development

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Tracheoesophageal disorders and diseases are prevalent in humans such that an organoid model of human esophagus could be greatly beneficial. We therefore established a three-dimensional esophageal organoid culture system through the directed differentiation of human pluripotent stem cells (hPSCs). We identified that sequential manipulation of several signaling pathways resulted in patterning of definitive endoderm to dorsal anterior foregut spheroids (dAFGs). Outgrowth of dAFGs for 1-2 months resulted in human esophageal organoids (HEOs) with a stratified squamous epithelium comparable to a late gestation mouse embryonic esophagus. These 1 and 2 month old HEOs were harvested for RNA to transcriptionally profile and compare them to profiles of esophageal tissue biopsies and keratinocytes. We then used HEOs and mouse embryos to identify how SOX2 mediates separation of the esophageal and respiratory lineages and found that loss of endodermal Sox2 results in complete esophageal agenesis. Using a SOX2 CRISPR interference iPS line, we generated dorsal and ventral anterior foregut progenitors (by manipulating BMP signaling) with or without SOX2-knockdown.At the transcriptional level, SOX2 acts to promote esophageal specification in both mice and humans in part by inhibiting Wnt signaling in the dorsal AFG and promoting survival of esophageal epithelium. In addition to this use of hPSC-derived esophageal organoids to study development, HEOs can be used for future studies of esophageal pathologies, such as Barretts metaplasia and carcinoma. SOURCE: James Wells (james.wells@cchmc.org) - Cincinnati Children's Hospital Medical Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team