PLX124866

GSE113298: Characterizing the transcriptomic profile of the cortex within the long-term window of ischemic tolerance mediated by resveratrol preconditioning

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

To identify novel genes and adaptations induced by resveratrol preconditioning that could promote long-term cerebral ischemic tolerance. After analyzing the results, we identified only 155 differentially expressed genes among which the majority of genes consisting of 126 were downregulated and only 29 genes were upregulated. The downregulated genes clustered into biological processes involved in regulating the memebrane potential, gene expression regulation, and neurotrasmitter transport secrection. While the upregulated gene included immediate early genes and genes involved in antioxidant defense. SOURCE: NATHALIE KHOURY (n.elkhoury@med.miami.edu) - University of Miami

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team