PLX200270

GSE113957: Predicting age from the transcriptome of human dermal fibroblasts

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

There is a marked heterogeneity in human lifespan and health outcomes for people of the same chronological age. Thus, one fundamental challenge is to identify molecular and cellular biomarkers of aging that could predict lifespan and be useful in evaluating lifestyle changes and therapeutic strategies in the pursuit of healthy aging. Here, we developed a computational method to predict biological age from gene expression data in skin fibroblast cells using an ensemble of machine learning classifiers. We generated an extensive RNA-seq dataset of fibroblast cell lines derived from 133 healthy individuals whose ages range from 1 to 94 years, and 10 patients with Hutchinson-Gilford Progeria Syndrome (HGPS), a premature aging disease. On this dataset, our method predicted chronological age with a median error of 4 years, outperforming algorithms proposed by prior studies that predicted age from DNA methylation [48] and gene expression data [6,9] for fibroblasts. Importantly, our method consistently predicted higher ages for Progeria patients compared to age-matched controls, suggesting that our algorithm can identify accelerated aging in humans. These results show that the transcriptome of skin fibroblasts retains important age-related signatures. Our computational tool may also be applicable to predicting age from other genome-wide datasets. SOURCE: Maxim,Nikolaievich,Shokhirev (mshokhirev@salk.edu) - IGC Salk Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team