PLX159587

GSE114797: Histone acetyltransferase Kat2a stabilises pluripotency with control of transcriptional heterogeneity

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cell fate transitions in mammalian stem cell systems have often been associated with transcriptional heterogeneity, however existing data have failed to establish a functional or mechanistic link between the two phenomena. Experiments in unicellular organisms support the notion that transcriptional heterogeneity can be used to facilitate adaptability to environmental changes and have identified conserved chromatin-associated factors that modulate levels of transcriptional noise. By inhibiting the paradigmatic histone acetyl-transferase, and candidate noise modulator, Kat2a (yeast orthologue Gcn5) in mouse embryonic stem cells, we show destabilisation of pluripotency-associated gene regulatory networks through increased global and locus-specific transcriptional heterogeneity. Functionally, network destabilisation associates with reduced pluripotency and accelerated mesendodermal differentiation, with increased probability of transitions into lineage commitment. Thus, we functionally link transcriptional heterogeneity to cell fate transitions through manipulation of the histone acetylation landscape of mouse embryonic stem cells and establish a general paradigm that could be exploited in other normal and malignant stem cell fate transitions. SOURCE: Cristina Pina (cp533@medschl.cam.ac.uk) - NHSBT University of Cambridge

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team