PLX217051

GSE114943: Light can synchronise peripheral clocks autonomously from each other [darkness experiment (DD)]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Organisms have adapted to the changing environmental conditions within the 24h cycle of the day by temporally segregating tissue physiology to the optimal time of the day. On the cellular level temporal segregation of physiological processes is established by the circadian clock, a Bmal1 dependent transcriptional oscillator network. The circadian clocks within individual cells of a tissue are synchronised by environmental signals, mainly light, in order to reach temporally segregated physiology on the tissue level. However, how light mediated synchronisation of peripheral tissue clocks is achieved mechanistically and whether circadian clocks in different organs are autonomous or interact with each other to achieve rhythmicity is unknown. Here we report that light can synchronise core circadian clocks in two peripheral tissues, the epidermis and liver hepatocytes, even in the complete absence of functional clocks in any other tissue within the whole organism. On the other hand, tissue extrinsic circadian clock rhythmicity is necessary to retain rhythmicity of the epidermal clock in the absence of light, proving for the first time that the circadian clockwork acts as a memory of time for the synchronisation of peripheral clocks in the absence of external entrainment signals. Furthermore, we find that tissue intrinsic Bmal1 is an important regulator of the epidermal differentiation process whose deregulation leads to a premature aging like phenotype of the epidermis. Thus, our results establish a new model for the segregation of peripheral tissue physiology whereby the synchronisation of peripheral clocks is acquired by the interaction of a light dependent but circadian clock independent pathway with circadian clockwork dependent cues. SOURCE: Aikaterini Symeonidi (ksymeonidh@gmail.com) - Stem cells and Cancer Lab Institut for Research in Biomedicine (IRB-Barcelona)

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team