PLX027646

GSE115305: Self-associated molecular patterns mediate cancer immune evasion by engagement of Siglec receptors

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cancer immunotherapy targeting inhibitory receptors on T cells has changed the landscape of oncological practice, but most patients do not respond to current approaches. Thus, new targets on T cells for cancer immunotherapy are needed. CD33-related Siglecs are pattern recognition immune receptors binding to a broad range of sialoglycan ligands, which appear to function as self-associated molecular patterns (SAMPs) to dampen unwanted immune responses against self. Nave T cells in humans have very low levels of inhibitory Siglec expression. Here, we show Siglec-9 in non-small cell lung cancer (NSCLC) are significantly upregulated on tumor-infiltrating T cells. These findings were confirmed in other tumor types including colorectal cancer, and ovarian cancer. Characterization of Siglec-9 expressing T cells showed a co-expression of inhibitory receptors including PD-1 and a distinct phenotype with increased cytokine production upon restimulation, compared to Siglec negative T cells. Functional analysis by reduction of sialoglycan-SAMPs on tumor cells in vitro and in vivo demonstrated an increased tumor cell killing and an inhibition of tumor growth. Overexpression of inhibitory Siglecs on T cells enhanced tumor growth in mice and exchange of inhibitory Siglecs on mouse T cells with an activating Siglec enhanced anti-cancer immunity. Increased T cell expression of Siglec-9 in NSCLC patients also correlated with survival, and analysis of Siglec-9 polymorphisms showed an association with the risk of developing lung and colorectal cancer. Our data identify the sialoglycan-SAMP/Siglec pathway as potential new target to improve T cell activation and cancer immunotherapy. SOURCE: Heinz Läubli (heinz.laeubli@unibas.ch) - Medical Oncology and Cancer Immunology University of Basel

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team