PLX038361

GSE115437: HDAC1 modulates OGG1-initiated oxidative DNA damage repair, brain aging, and Alzheimers disease pathology

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Unrepaired DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair activity to stave off age-associated functional decline remain obscure. Here, we show that histone deacetylase 1 (HDAC1) modulates DNA repair in the aging brain via targeting OGG1 of the base excision repair pathway. Mice deficient in HDAC1 display age-associated accumulation of DNA damage in the brain and cognitive impairment. HDAC1 interacts with and positively stimulates OGG1, a DNA glycosylase that primarily acts on 8-oxoguanine (8-oxoG), a type of oxidative DNA damage associated with transcriptional repression. Loss of HDAC1 leads to impaired OGG1 activity, 8-oxoG accumulation at the promoters of a subset of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG lesions along with reduced HDAC1 activity and downregulation of a similar set genes in the 5XFAD mouse model of Alzheimers disease (AD). Notably, pharmacological activation of HDAC1 confers protection against the deleterious effects of 8-oxoG lesions in the brains of aged wild-type and 5XFAD mice. Our work uncovers an important role for HDAC1 in the repair of 8-oxoG lesions and highlights HDAC1 activation as a novel therapeutic strategy to counter functional decline during brain aging and neurodegeneration. SOURCE: Li-Huei Tsai (lhtsai_geo@hotmail.com) - Li-Huei Tsai MIT

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team