Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreTET enzymes are dioxygenases that promote DNA demethylation by oxidizing the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Here we report a close correspondence between 5hmC-marked regions, chromatin accessibility and enhancer activity in B cells, and a strong enrichment for consensus binding motifs for basic region-leucine zipper (bZIP) transcription factors at TET-responsive genomic regions. Functionally, Tet2 and Tet3 regulate class switch recombination (CSR) in murine B cells by enhancing expression of Aicda, encoding the cytidine deaminase AID essential for CSR. TET enzymes deposit 5hmC, demethylate and maintain chromatin accessibility at two TET-responsive elements, TetE1 and TetE2, located within a superenhancer in the Aicda locus. Transcriptional profiling identified BATF as the bZIP transcription factor involved in TET-dependent Aicda expression. 5hmC is not deposited at TetE1 in activated Batf-deficient B cells, indicating that BATF recruits TET proteins to the Aicda enhancer. Our data emphasize the importance of TET enzymes for bolstering AID expression, and highlight 5hmC as an epigenetic mark that captures enhancer dynamics during cell activation. SOURCE: Anjana Rao (arao@lji.org) - Anjana Rao La Jolla Institute for Allergy and Immunology
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team