PLX054980

GSE116391 (mouse): Mutations in splicing factor SF3B1 promote transformation through MYC stabilization

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Although mutations in the RNA splicing factor SF3B1 are frequently observed in multiple human cancers, their functional role in promoting tumorigenesis and therapeutic significance remain poorly understood. Here we characterize the splicing landscape of 79 tumors and 12 isogenic cell lines harboring SF3B1 hotspot mutations, identifying hundreds of cryptic 3 splice site (ss) events shared as well as specific to different tumor types. Regulatory network analysis shows that tumors harboring the most common hotspot mutation in SF3B1 (SF3B1K700E) activate the MYC transcriptional program. SF3B1 mutations lead to a dramatic decay of transcripts encoding the key PP2A phosphatase subunit PPP2R5A due to aberrant 3ss usage, resulting in increased c-MYC serine 62 phosphorylation (allowing MYC to escape ubiquitin-mediated degradation) and in increased BCL2 serine 70 phosphorylation (leading to anti-apoptotic effects). This effect of SF3B1K700E on c-MYC and BCL2 activation through post-translational regulation was conserved across human and mouse cells and could be rescued by restored expression of PPP2R5A. Consonant with this, mutant SF3B1 promoted c-MYC driven tumorigenesis could be restored by the PP2A activating agent FTY-720. This study reveals the functional contribution of mutant SF3B1 to tumorigenesis through regulation of established oncogenic pathways and provides therapeutic strategies for related tumors. SOURCE: Zhaoqi Liu (zl2495@cumc.columbia.edu) - The Rabadan Lab Columbia university

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team