PLX009871

GSE116744: RNA-Seq analysis of long-term estrogen-deprived (LTED) MDA-MB-134VI (MM134) and SUM44PE (SUM44) ILC cell lines

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: Invasive lobular breast carcinoma (ILC) is a histological subtype of breast cancer that is characterized by loss of E-cadherin, and high expression of estrogen receptor alpha (ER). Many patients with ILC are effectively treated with adjuvant aromatase inhibitors (AIs), however, acquired AI resistance remains a significant problem.; Methods: To identify underlying mechanisms of acquired antiestrogen resistance in ILC, we developed a total of 6 long-term estrogen-deprived (LTED) variant cell lines of the human ILC cell lines SUM44PE (SUM44; 2 lines) and MDA-MB-134VI (MM134; 4 lines). To better understand mechanisms of AI resistance in these models, we performed transcriptional profiling analysis by RNA-sequencing.; Results: MM134 LTED cells expressed ER at decreased level and lost growth response to estradiol, while SUM44 LTED cells retained partial ER activity. Our transcriptional profiling analysis identified shared activation of lipid metabolism across all 6 independent models. However, the underlying basis of this signature was distinct between models. Oxysterols were able to promote the proliferation of SUM44 LTED cells, but not MM134 LTED. In contrast, MM134 LTED cells displayed high expression of the Sterol regulatory element-binding protein 1 (SREBP1), a regulator of fatty acid and cholesterol synthesis, and were hypersensitive to genetic or pharmacological inhibition of SREBPs. Several SREBP1 downstream targets involved in fatty acid synthesis, including FASN, were induced, and MM134 LTED cells were more sensitive to etomoxir, an inhibitor of the rate-limiting enzyme in -oxidation, than their respective parental control cells.; Conclusions: Our characterization of a unique series of AI-resistant ILC models identifies a lipogenic phenotype, including overexpression of SREBP1. This novel metabolic target deserves further studyfor the prevention and treatment of AI-resistance for patients with ILC. SOURCE: Kevin Levine (levine.kevin@pitt.edu) - University of Pittsburgh

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team