PLX244365

GSE118729: Gene expression profile of human iPSC-derived nephron progenitor cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

During development, nephron progenitor forming one million nephrons, a functional unit in the kidney. However, nephron progenitor ceases before birth in human when they terminally differentiated to the nephron. Our lab established the method for induction of nephron progenitors from mouse Embryonic Stem (ES) cells and/or human induced Pluripotent Stem Cells (iPSCs) (Taguchi et al., Cell Stem Cell. 2014, 2017). For application of induced nephron progenitors to regenerative medicine, a large number of cells are required such as disease modeling and drug screening. To selectively propagate human iPS-derived nephron progenitors in vitro in an undifferentiated state, we developed SIX2-GFP iPS line and optimized culture condition of induced nephron progenitors by modifying our previously developed condition (Tanigawa et al., Cell Rep. 2016). To understand how whole gene expression profiles of human iPS-derived nephron progenitor cells are changed during culture, we isolated nephron progenitor cells by FACS and cultured in our defined culture condition. Purified RNAs from cultured cells at day 7 or un-cultured nephron progenitor cells were analyzed by RNA-seq. SOURCE: Shunsuke Tanigawa (shunsuke_tanigawa@hotmail.com) - Kidney development Kumamoto University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team