PLX015060

GSE118989: KCNH2-3.1 mediates aberrant complement activation to impair hippocampal-medial prefrontal pathway associated with schizophrenia

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Although elevated KCNH2-3.1 potassium channel expression is associated with cognitive dysfunctions and with schizophrenia, little is known about the pathophysiology of synapses in patient neurons and how elevated levels of KCNH2-3.1 potassium channel could lead to synaptic deficits in humans. Here, we identified specific and delayed disruption of hippocampal-mPFC synaptic transmission and connection unexpectedly associated with age-dependent reduction of SERPING1, CFH and CD74 in the KCNH2-3.1 overexpression transgenic mice, and dysfunctional interactions between hippocampus and prefrontal cortex in the fMRI coupling signal during working memory encoding in healthy subjects carrying schizophrenia-associated risk alleles of KCNH2 potassium channel. These three genes are enriched in neurons or microglia, and reduced expression of these genes dysregulates the complement cascade activation underlying impaired synaptic connectivity of hippocampal-mPFC projections. Knockdown of these genes expression impairs synapse formation, and replenishing reduced CFH gene expression rescues KCNH2-3.1-induced impaired synaptogenesis. Our results uncover a previously unrecognized role of truncated KCNH2-3.1 potassium channel mediating reduced expression of three genes mentioned above, which enhances aberrant complement cascade activation during development. These results direct an important conceptual advance that truncated KCNH2-3.1 causes synapse loss mediated by abnormally activated complement system, rather than aberrant neuronal firing, may represent the therapeutic targets for a number of patients with schizophrenia. SOURCE: Gabsang Lee (glee48@exchange.johnshopkins.edu) - Institute for Cell Engineering, Johns Hopkins University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team