PLX086188

GSE119470: Animal model of acute-on-chronic alcoholic liver injury

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background and aims: We aimed to study the pathogenesis of AH in an animal model of acute-on-chronic alcoholic liver disease which combines chronic hepatic fibrosis with intragastric alcohol administration.; Methods: Adult male C57BL6/J mice were treated with CCl4 (0.2 ml/kg, 2weekly by intraperitoneal injections for 6 weeks) to induce chronic liver fibrosis. Then, ethyl alcohol (EtOH) (up to 25 g/kg/day, for 3 weeks) was administered continuously to mice via a gastric feeding tube, with or without one-half dose of CCl4. Liver and serum markers were evaluated to characterize acute-on-chronic-alcoholic liver disease in our model.; Results: CCl4 or EtOH treatment alone induced liver fibrosis or steatohepatitis, respectively, findings that were consistent with expected pathology. Combined treatment with CCl4 and EtOH resulted in a marked exacerbation of liver injury, as evident by the development of hepatic inflammation, marked steatosis, and pericellular fibrosis, and by increased serum transaminase levels, compared to mice treated with either treatment alone. Liver transcriptomic changes specific to combined treatment group demonstrated close concordance with pathways perturbed in human severe cases of AH. In addition to gene expression changes, E. coli and Candida species were also significantly more abundant in livers of mice co-treated with CCl4 and EtOH.; Conclusions: Mice treated with CCl4 and EtOH displayed several key characteristics of human AH, including pericellular fibrosis, increased hepatic bacterial load, and dysregulation of the same molecular pathways. This model may be useful for developing therapeutics for AH. SOURCE: Ivan Rusyn (Irusyn@tamu.edu) - TEXAS A&M UNIVERSITY

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team