PLX237989

GSE120244: Gene expression profiles of Setd2 fl/fl BMSCs infected with lentivirus expressing GFP and Cre respectively

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

During the aging process, bone marrow mesenchymal stem cells (BMSCs) exhibit declined osteogenesis accompanied by excess adipogenesis, which will lead to osteoporosis. Here we report that the H3K36 trimethylation, catalyzed by histone methyltransferase SETD2 regulates lineage commitment of BMSCs. Deletion of Setd2 in mBMSCs, through conditional Cre expression driven by Prx1 promoter, resulted in bone loss and marrow adiposity. Loss of Setd2 in BMSCs in vitro facilitated differentiation propensity to adipocytes rather than to osteoblasts. Through conjoint analysis of RNA-seq and ChIP-seq data, we identified a SETD2 functional target gene, Lbp, on which H3K36me3 was enriched, and its expression was affected by Setd2 deficiency. Furthermore, overexpression of LBP could partially rescue the lack of osteogenesis and enhanced adipogenesis resulted from the absence of Setd2 in BMSCs. Further mechanism study demonstrated that the trimethylation level of H3K36 could regulate Lbp transcriptional initiation and elongation. These findings suggest that H3K36 trimethylation mediated by SETD2 could regulate the cell fate of mesenchymal stem cells in vitro and in vivo, indicating that the regulation of H3K36me3 level by targeting SETD2 and/or the administration of downstream LBP protein may represent potential therapeutic way for new treatment in metabolic bone diseases, such as osteoporosis. SOURCE: Lijun Wang (ljwangnau@126.com) - State Key Laboratory of Cell Biology Chinese Academy of Sciences

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team