PLX168334

GSE121244: Tbx3 governs a transcriptional program to maintain atrioventricular conduction system form and function [RNA-Seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Rationale: The atrioventricular conduction system controls ventricular activation and is delineated by expression of Tbx3. Genome-wide association studies identified genetic variants near TBX3 associated with conduction velocities (PR interval and QRS duration), suggesting minor changes in TBX3 dose affect conduction system function. Objective: To assess whether and how Tbx3 dose reduction affects the integrity of the atrioventricular conduction system. Methods and Results: Electrocardiograms revealed a PR interval shortening and prolonged QT interval and QRS duration in heterozygous Tbx3 mutants compared to wild-types. We observed that the atrioventricular bundle and proximal bundle branches of Tbx3+/- mice after birth became hypoplastic, whereas the size of the atrioventricular node was not affected. The transcriptomes of wild-type and Tbx3+/- atrioventricular nodes were analyzed using BAC-Tbx3-Egfp mice enabling specific isolation of the atrioventricular node by laser capture microdissection followed by RNA-sequencing. Hundreds of genes were slightly but consistently deregulated. Cross-referencing with transcriptome data of isolated cardiomyocytes of the conduction system and chamber myocardium derived from Tbx3+/Venus;BAC-Nppb-Katushka hearts revealed that a set of chamber-enriched genes, including Kcne1 (MinK), Ryr2, and Scn5a, were upregulated in Tbx3+/- atrioventricular nodes, whereas conduction system-enriched genes, including Hcn4 and Cacna2d2, were downregulated. We performed ATAC-sequencing on purified fetal Tbx3+ atrioventricular cardiomyocytes to identify potential atrioventricular-specific regulatory DNA elements on a genome-wide scale, and identified regulatory elements mediating the Tbx3-dependent regulation of Ryr2 and other target genes in the atrioventricular node. Conclusions: Tbx3 dose reduction results in deregulation of a large number of genes affecting the electrical properties of the atrioventricular node and causes failure to maintain the structural integrity of the atrioventricular bundle. These data provide a mechanism underlying differences in PR interval and QRS duration in individuals carrying associated variants in the TBX3 locus. SOURCE: Vincent,M.,Christoffels (v.m.christoffels@amc.nl) - Academic Medical Center Amsterdam

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team