PLX178619

GSE121286: Evaluation of APOL1 ASO in a novel model of APOL1-associated renal disease

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

African Americans develop end-stage renal disease at a higher rate compared to European Americans due to two polymorphisms (G1 and G2 risk variants) in the apolipoprotein L1 (APOL1) gene that are common in people of African ancestry. Not all homozygous risk allele carriers, however, develop renal disease suggesting that modifying factors (second hits) are required. Although the compelling genetic evidence provides an exciting opportunity for personalized medicine in chronic kidney disease (CKD), drug discovery efforts have been greatly hindered by the fact that APOL1 expression is limited to humans and select nonhuman primates. We describe a novel physiologically-relevant genomic mouse model of APOL1-associated renal disease that expresses human APOL1 from the endogenous human promoter, resulting in expression in similar tissues and at similar relative levels as humans. While nave genomic APOL1 transgenic mice did not exhibit a renal disease phenotype, a single administration of IFN was sufficient to robustly induce proteinuria only in APOL1 G1 transgenic mice, despite inducing kidney APOL1 expression in both G0 and G1 mice, serving as a clinically-relevant second hit. We also report on the discovery of the first APOL1 inhibitor, IONIS-APOL1Rx, a Generation 2.5 antisense oligonucleotide (ASO) targeting APOL1 mRNA. Treatment of APOL1 G1 mice with IONIS-APOL1Rx prior to IFN challenge robustly and dose-dependently inhibited kidney and liver APOL1 expression and protected against IFN-induced proteinuria, indicating that the disease-relevant cell types are sensitive to ASO treatment. Collectively, these data suggest that IONIS-APOL1Rx may be an effective therapeutic for APOL1 nephropathies and warrants further development. SOURCE: Sagar,S,Damle (sdamle@ionisph.com) - Ionis Pharmaceuticals

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team