PLX255391

GSE121671: Tet inactivation disrupts YY1 binding and long-range chromatin interactions to cause developmental defects in embryonic heart

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Tet-mediated DNA methylation oxidation plays an important role in shaping the epigenetic landscapes and chromatin accessibility during gene expression. While several studies demonstrated pivotal roles of Tet proteins in regulating embryonic development, little is known about their functions in heart development. Here we systemetically analyzed DNA methylation and hydroxymethylation dynamics during early cardiac development in both human and mice. We discovered that cardiac-specific deletion of Tet2 and Tet3 in mice (Tet2/3-DKO) led to ventricular non-compaction cardiomyopathy (NCC) with embryonic lethality. Single-cell and bulk RNA-seq analyses revealed dramatic decrease of cardiomyocytes in Tet2/3-DKO heart tissues. Impaired DNA demethylation and chromatin accessibility in Tet2/3-DKO mice further compromised chromatin association of a key transcription factor, Ying-yang1 (YY1), and reduced long-range promoter-enhancer interactions at key genes involved in cardiac development. Taken together, our studies establish the physiological role of Tet proteins in the regulation of DNA methylation dynamics and chromatin configuration during embryonic heart development in mammals. SOURCE: Jia Li (jli@ibt.tamhsc.edu) - Deqiang Sun Texas A&M U Health Science Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team