PLX221068

GSE122562: Transgenic mice expressing tunable levels of DUX4 develop characteristic facioscapulohumeral muscular dystrophy-like pathophysiology ranging in severity

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

All types of facioscapulohumeral muscular dystrophy (FSHD) are caused by the aberrant myogenic activation of the somatically silent DUX4 gene, which initiates a cascade of cellular events ultimately leading to FSHD pathophysiology. Therefore, FSHD is a dominant gain-of-function disease that is amenable to modeling by DUX4 overexpression. However, there is large variability in the patient population. Typically, progressive skeletal muscle weakness becomes noticeable in the second or third decade of life, yet there are many genetically FSHD individuals who develop symptoms much later in life or remain relatively asymptomatic throughout their lives. Conversely, in rare cases, FSHD may present clinically prior to 5-10 yrs of age, ultimately manifesting as a very severe early onset form of the disease. Thus, there is a need to control the timing and severity of pathology in FSHD-like models. Methods: We have recently described a line of conditional DUX4 transgenic mice, FLExDUX4, that develop a myopathy upon induction of human DUX4-fl expression in skeletal muscle. Here, we use the FLExDUX4 mouse crossed with the skeletal muscle-specific and tamoxifen inducible line ACTA1-MerCreMer to generate a highly versatile bi-transgenic mouse model with chronic, low-level DUX4-fl expression and mild pathology, that can be induced to develop more severe FSHD-like pathology in a dose-dependent response to tamoxifen. We identified conditions to reproducibly generate models exhibiting mild, moderate, or severe DUX4-dependent pathophysiology, and characterized their progression. Results: We assayed DUX4-fl mRNA and protein levels, fitness, strength, global gene expression, histopathology, and immune response, all of which are consistent with an FSHD-like myopathic phenotype. Importantly, we identified sex-specific and muscle-specific differences that should be considered when using these models for preclinical studies. Conclusions: The ACTA1-MCM;FLExDUX4 bi-transgenic mouse model expresses a chronic low level of DUX4-fl and has mild pathology and detectable muscle weakness. The onset and progression of moderate to severe pathology can be controlled via tamoxifen injection to provide consistent and readily screenable phenotypes for assessing therapies targeting DUX4-fl mRNA and protein. Thus, these FSHD-like mouse models can be used to study a range of DUX4-fl expression and pathology dependent upon investigator need, through controlled mosaic expression of DUX4. SOURCE: Guo-Liang Chew (chewgl@fredhutch.org) - Bradley Lab Fred Hutchinson Cancer Research Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team