PLX003156

GSE122796: RNA Sequencing of three pairs of gastric cancer

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The prognosis after curative resection of gastric cancer (GC) remains unsatisfactory, and thus, the development of treatments involving alternative molecular and genetic targets is critical. Circular RNAs (circRNAs), new stars of the non-coding RNA network, have been identified as critical regulators in various cancers. Here, we aimed to determine the circRNA expression profile and investigate the functional and prognostic significance of circRNA in GC. Using next-generation sequencing profiling, we first characterized an abundant circRNA, hsa_circ_0008549, derived from the OSBPL10 gene, and named it circOSBPL10. The expression of circOSBPL10 was found via quantitative real-time RT-PCR (qRT-PCR) to be upregulated in GC tissues, and silencing of circOSBPL10 significantly inhibited gastric cancer cell growth, migration and invasion in multiple experiments. We further confirmed that miR-136-5p is a downstream target of circOSBPL10 using RNA pull-down and luciferase reporter assays. Rescue experiments confirmed that circOSBPL10 regulates biological functions in GC cells via a circOSBPL10-miR-136-5p-WNT2 axis. In vivo experiments showed that circOSBPL10 promotes tumor growth and metastasis in mice. Furthermore, the level of circOSBPL10 was observed to be a prognostic marker of the overall survival and disease-free survival of patients with GC. Taken together, our findings reveal that circOSBPL10 may serve as a new proliferation factor and prognostic marker in gastric cancer. SOURCE: Jie Chen (sr0809@163.com) - Fudan University Shanghai Cancer Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team