PLX217561

GSE123379: NOTCH signaling is activated in and contributes to resistance in enzalutamide-resistant prostate cancer cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Prostate cancer is the second leading cause of cancer death among men in the United States. The Androgen receptor (AR) antagonist Enzalutamide is a FDA approved therapy for treatment of late stage prostate cancer patients and is currently under clinical study for early stage prostate cancer treatment. After a short positive response period, patients will develop drug resistance. In this study we used RNA-sequencing and bioinformatics analysis to identify Notch signaling pathway as a deregulated pathway in Enzalutamide-resistant cells. NOTCH2 and c-MYC positively correlated with AR expression in patients' samples mimicking cells with Enzalutamide-resistance. In Enzalutamide-resistant cells, MR49F and C4-2R, we found that cleaved-NOTCH1, HES1 and c-MYC protein expression are significantly elevated indicating an activated NOTCH1 pathway in those cells. In addition, ADAM10 and ADAM17 had a higher expression in Enzalutamide-resistant cells, suggesting a role for S2 cleavage in the increased cleaved NOTCH1 expression. Furthermore, treatment of Enzalutamide-resistant cells with PF-03084014 in combination with Enzalutamide increased cell death, decreased colony formation ability and re-sensitized Enzalutamide-resistant cells to Enzalutamide. Knockdown of NOTCH1 in C4-2R increases Enzalutamide sensitivity by decreasing cell proliferation and increasing cell death. In a 22RV1 xenograft model, PF-03084014 and Enzalutamide induced a decrease in tumor growth through a reduced cell proliferation and increased apoptosis. These results indicate that Notch1 signaling can contribute to Enzalutamide-resistance in Prostate cancer and inhibition of this pathway can re-sensitize resistant cells to Enzalutamide. SOURCE: Nadia,Marie,Atallah Purdue University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team