PLX003407

GSE123526: Differentially expressed genes in hematopoietic stem cells after loss of Mettl3

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Hematopoietic stem cells (HSCs) maintain balanced self-renewal and differentiation according to physiological demands, but how different facets of these functions are precisely regulated is not fully understood. N6-methyladenosine (m6A) mRNA methylation has emerged as an important mode of epitranscriptional gene expression regulation affecting many biological processes. We show that deleting the m6A methyltransferase, Mettl3, from the adult hematopoietic system led to an accumulation of HSCs in the bone marrow and marked reduction of HSC reconstitution potential due to a blockage of HSC differentiation. Interestingly, deleting Mettl3 from myeloid cells using Lysm-cre did not have any discernable impact on myeloid cell number or function. m6A sequencing on purified HSCs revealed 2,073 genes with significant m6A modification. In particular, Myc, a key regulator of HSC differentiation, was identified as a direct target of m6A in HSCs. Mettl3-deficient HSCs failed to up-regulate Myc expression upon stimulation to differentiate and enforced expression of Myc rescued differentiation defects of Mettl3-deficient HSCs. Our results thus revealed a key role of m6A in governing HSC differentiation by regulating Myc expression. This data includes RNA-Seq analysis to showing only minor gene expression changes in adult bone marrow murine hematopoietic stem cells 10 days after Mettl3 deletion by pIpC administration compared to pIpC treated controls. SOURCE: Heather Lee (hml2132@columbia.edu) - Ding Lab Columbia University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team