PLX134332

GSE123835: Zika virus antagonizes interferon response in patients and disrupts RIG-I-MAVS interaction through its CARD-TM domains

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The emerging threat to global health associated with the Zika virus (ZIKV) epidemics and its link to severe complications highlights a growing need to better understand the pathogenic mechanisms of ZIKV. Accumulating evidence for a critical role of type I interferon (IFN-I) in protecting hosts from ZIKV infection lies in the findings that ZIKV has evolved various strategies to subvert the host defense line by counteracting the early IFN induction or subsequent IFN signaling. Yet, mechanisms underlying the counter-IFN capability of ZIKV and its proteins, which might contribute to the well-recognized broad cellular tropisms and persistence of ZIKV, remain to be fully understood. In our current study, using RNA sequencing-based transcriptional profiling from the whole blood cells isolated from patients acutely infected by ZIKV, we found that transcriptional signatures of antiviral interferon-stimulated genes and innate immune sensors was absent in ZIKV-infected patients presents inactive as compared to healthy donors, suggesting that ZIKV might suppress the induction of IFN-I during the natural infection process in human. Furthermore, utilizing cellular or extracellular analysis of molecular interaction in a ZIKV NS4A-overexpression system, or in the context of actual ZIKV infection, we have identified that ZIKV NS4A directly binds MAVS and thereby interrupts RIG-I/MAVS interaction through its CARD-TM domains, leading to attenuated production of IFN-I. Taken together, these findings originated from patient studies have added new knowledge and molecular details to our understanding regarding how ZIKV mediates suppression of the IFN-I system and may provide new basis for future development of anti-ZIKV strategies. SOURCE: zhiyong shen (szypanther@gmail.com) - Sun Yat-sen University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team