PLX172491

GSE123863: Transcriptome profiling of neonatal heart regeneration

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. To uncover the molecular mechanisms underlying neonatal heart regeneration, we compared the transcriptomes and epigenomes of regenerative and non-regenerative mouse hearts over a 7-day time period following myocardial infarction.; Methods: RNA-Seq, H3K27ac ChIP-Seq and H3K27me3 ChIP-Seq were performed on ventricular samples from regenerative P1 or non-regenerative P8 mouse hearts at +1.5d, +3d and +7d after MI or Sham surgery to assemble the transcriptome, active chromatin and repressed chromatin landscapes during neonatal heart regeneration. Dynamic enhancer landscapes from mouse hearts during cardiac development were analyzed using data from ENCODE. Effects on cardiomyocyte proliferation and cardiac function from selected factors identified in this study were tested using BrdU/EdU pulse-labeling or mouse models coupled with immunohistochemistry and echocardiography.; Results: By integrating gene expression profiles with histone marks associated with active or repressed chromatin, we identified transcriptional programs underlying neonatal heart regeneration and the blockade to regeneration in later life. Our results reveal a unique immune response in regenerative hearts and an embryonic cardiogenic gene program that remains active during neonatal heart regeneration. Among the unique immune factors and embryonic genes associated with cardiac regeneration, we identified Ccl24, which encodes a cytokine, and Igf2bp3, which encodes an RNA-binding protein, as previously unrecognized regulators of cardiomyocyte proliferation.; Conclusions: Our data provide insights into the molecular basis of neonatal heart regeneration and identify genes that might be modulated to promote heart regeneration. SOURCE: Zhaoning Wang (zhaoning.wang@utsouthwestern.edu) - Eric Olson Lab UT Southwestern

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team