PLX052729

GSE123938: Impact of Diet Induced Obesity on Hyperoxic Lung Injury

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: Obesity has become a worldwide concern. Acute respiratory distress syndrome (ARDS) comprises 10.4% of total intensive care unit admissions and is associated with very high mortality. ARDS incidence is increased in obese patients. Exposure of rodents to hyperoxia mimics many of the clinical and pathologic features observed in patients with ARDS. The aim of this study was to determine the impact of high fat diet-induced obesity on the susceptibility to hyperoxic acute lung injury in mice.; Methods: Male C57BL/6 mice received 60% fat versus ingredient matched 10% fat diet. Mice were exposed to >95% oxygen to induce lung damage. RNA was isolated from lung homogenates and by comparing RNA sequencing results with mouse Mitocarta, an inventory of genes encoding proteins with mitochondrial localization, we identified fatty acid synthase (FASN), an enzyme catalyzing de novo fatty acid synthesis, as one of the mitochondrial genes significantly changed with diet and with hyperoxia. We generated mice deficient in FASN in alveolar epithelial cells by using a tamoxifen inducible Cre recombinase construct (FASNflox/flox SPC Cre+/-) and subjected them to hyperoxia and high fat diet.; Results: Mice receiving 60% fat diet had significantly higher weight, serum cholesterol and fasting glucose. High fat diet mice had significantly reduced survival and increased lung damage, as assessed by BAL protein and LDH, histology and TUNEL staining. By RNA sequencing of lung homogenates we identified FASN as one of the mitochondrial genes significantly reduced in mice receiving 60% compared to 10% fat diet and further reduced with hyperoxia. We confirmed that FASN protein levels in the lung of high fat diet mice were lower by immunoblotting and immunohistochemistry. After 48 hours of hyperoxia FASNflox/flox SPC Cre+/- mice displayed increased levels of BAL protein and LDH and more severe histologic lung injury. FASNflox/flox SPC Cre+/- mice remained more prone to lung injury after hyperoxic exposure even when they received 60% fat diet.; Conclusions: These results demonstrate that obesity increases the severity of hyperoxia induced acute lung injury in mice by altering FASN levels in the lung of high fat diet fed rodents. To our knowledge, this is the first study to show that high fat diet leads to altered FASN expression in the lung and that both high fat diet and reduced FASN in alveolar epithelial cells lead to increased lung injury under hyperoxic conditions. SOURCE: Maria Plataki (map2095@med.cornell.edu) - Division of Pulmonary and Critical care Medicine, Augustine MK Choi Lab Weill Cornell Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team