PLX234794

GSE123950: Chemotherapeutic agent doxorubicin alters uterine gene expression in response to estrogen in ovariectomized CD-1 adult mice

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Chemotherapy can potentially impair fertility in premenopausal cancer patients. Female fertility preservation has been mainly focused on the ovarian aspects and benefited greatly from assisted reproductive technologies, such as in vitro fertilization (IVF). The rate-limiting step for the success of IVF is embryo implantation in the uterus. Doxorubicin (DOX) is a widely used chemotherapeutic agent with ovarian toxicity. It remains unknown if the uterus is a direct target of DOX. To circumvent the indirect uterine effect from ovarian toxicity of DOX and to investigate potential long-term impact of DOX on the uterus, young adult ovariectomized CD-1 mice were given an intraperitoneal injection once with PBS or DOX (10 mg/kg, a human relevant chemotherapeutic dose), and 30 days later, each set of mice was randomly assigned into three groups and subcutaneously injected with oil, 17-estradiol (E2, for 6 hours), and progesterone (P4, for 54 hours), respectively. Uterine transcriptomic profiles were determined using RNA-seq. Principal component analysis of the uterine transcriptomes revealed four clusters from the six treatment groups: PBS-oil & DOX-oil, PBS-P4 & DOX-P4, PBS-E2, and DOX-E2, indicating that DOX treatment did not affect the overall uterine transcriptomic profiles in the oil and P4-treated mice but altered uterine responses to E2 treatment. These data demonstrate that DOX can directly target the uterus and has a long-term impact on uterine responses to E2. SOURCE: Christian Andersen (cla71@uga.edu) - YE LAB University of Georgia

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team